ANSWERS TO SELECTED ODD-NUMBERED PROBLEMS
Exercises 1.1, Page 11
- linear, second order
- linear, fourth order
- nonlinear, second order
- linear, third order
- nonlinear, first order
- linear in x but nonlinear in y
- Domain of function is [−2, ∞); largest interval of definition for solution is (−2, ∞).
- Domain of function is the set of real numbers except x = 2 and x = −2; largest intervals of definition for solution are (−∞, −2) (−2, 2) or (2, ∞).
- defined on (−∞, ln 2) or on (ln 2, ∞)
- m = −2
- m = 2, m = 3
- m = 0, m = −1
- m = 3, m = 5
- y = 2
- no constant solutions
- y = 0
- y = −4, y = 4
Exercises 1.2, Page 17
- y = 1/(1 − 4e−x)
- y = 1/(x2 − 1); (1, ∞)
- y = 1/(x2 + 1); (−∞, ∞)
- x = −cos t + 8 sin t
- y = 5e−x − 1
- y = 0, y = x3
- half-planes defined by either y > 0 or y < 0
- half-planes defined by either x > 0 or x < 0
- the regions defined by y > 2, y < −2, or −2 < y < 2
- any region not containing (0, 0)
- yes
- no
- (a) y = cx
(b) any rectangular region not touching the y-axis
(c) No, the function is not differentiable at x = 0.
- (b) y = 1/(1 − x) on (−∞, 1);
y = −1/(x + 1) on (−1, ∞)
- y = −sin 3x
- y = 0
- no solution
Exercises 1.3, Page 25
Chapter 1 in Review, Page 30
- (a), (d)
- (b)
- (b)
- y = c1 and y = c2ex, c1 and c2 constants
- y′ = x2 + y2
- (a) The domain is the set of all real numbers.
(b) either (−∞, 0) or (0, ∞)
- For x0 = −1, the interval is (−∞, 0), and for x0 = 2, the interval is (0, ∞).
- (c)
- (−∞, ∞)
- (0, ∞)
- y′ + y = 4x − 2
- y0 = −3, y1 = 0
Exercises 2.1, Page 41
- 0 is asymptotically stable (attractor); 3 is unstable (repeller).
- 2 is semi-stable.
- −2 is unstable (repeller); 0 is semi-stable; 2 is asymptotically stable (attractor).
- −1 is asymptotically stable (attractor); 0 is unstable (repeller).
Exercises 2.2, Page 49
- y = − cos 5x + c
- y = e−3x + c
- y = cx4
- −3e−2y = 2e3x + c
- x3 ln x − x3 = y2 + 2y + ln | y| + c
- 4 cos y = 2x + sin 2x + c
- (ex + 1)−2 + 2(ey + 1)−1 = c
- S = cekr
- (y + 3)5 ex = c(x + 4)5 ey
- y = sin(x2 + c)
- x = tan(4t − π)
- (a) y = 2, y = −2, y = 2
- y = 1
- y = 1 + tan ( x)
- y(x) = (4h/L2)x2 + a
Exercises 2.3, Page 59
- y = ce5x, (−∞, ∞)
- y = e3x + ce−x, (−∞, ∞)
- y = + , (−∞, ∞)
- y = x−1 ln x + cx−1, (0, ∞)
- y = cx − x cos x, (0, ∞)
- y = x3 − x + cx−4 , (0, ∞)
- y = x−2 ex + cx−2 e−x, (0, ∞)
- x = 2y6 + cy4 , (0, ∞)
- y = sin x + c cos x, (−π/2, π/2)
- (x + 1)ex y = x2 + c, (−1, ∞)
- (sec θ + tan θ)r = θ − cos θ + c, (−π/2, π/2)
- y = e−3x + cx−1 e−3x, (0, ∞)
- y = x−1 ex + (2 − e)x−1 , (0, ∞)
- , (−∞, ∞)
- (x + 1)y = x ln x − x + 21, (0, ∞)
- , (0, ∞)
- x = −y2 − 2y − 2 + cey
Exercises 2.4, Page 66
- x2 − x + y2 + 7 y = c
- x2 + 4xy − 2y4 = c
- x2 y2 − 3x + 4y = c
- not exact
- xy3 + y2 cos x − x2 = c
- not exact
- xy − 2xex + 2ex − 2x3 = c
- x3 y3 − tan−1 3x = c
- −ln | cos x | + cos x sin y = c
- t4y − 5t3 − ty + y3 = c
- x3 + x2y + xy2 − y =
- 4ty + t2 − 5t + 3y2 − y = 8
- y2 sin x − x3y − x2 + y ln y − y = 0
- k = 10
- x2y2 cos x = c
- x2 − = c
- x2y2 + x3 = c
- 3x2y3 + y4 = c
- −2ye3x + e3x + x = c
- (c)
- (a)
(b)
Exercises 2.5, Page 71
- y + x ln |x| = cx
- (x − y) ln |x − y| = y + c(x − y)
- x + y ln |x| = cy
- ln(x2 + y2) + 2 tan−1 (y/x) = c
- 4x = y(ln | y| − c)2
- y3 + 3x3 ln |x| = 8x3
- ln |x| = ey/x − 1
- y3 = 1 + cx−3
- y−3 = x + + ce3x
- et/y = ct
- y−3 = −x−1 + x−6
- y = −x − 1 + tan(x + c)
- 2y − 2x + sin 2(x + y) = c
- 4(y − 2x + 3) = (x + c)2
- −cot (x + y) + csc (x + y) = x + − 1
- (b) y = + (−x + cx−3)−1
Exercises 2.6, Page 76
- y2 = 2.9800, y4 = 3.1151
- y10 = 2.5937, y20 = 2.6533; y = ex
- y5 = 0.4198, y10 = 0.4124
- y5 = 0.5639, y10 = 0.5565
- y5 = 1.2194, y10 = 1.2696
- Euler: y10 = 3.8191, y20 = 5.9363
RK4: y10 = 42.9931, y20 = 84.0132
Exercises 2.7, Page 83
- 7.9 years; 10 years
- 760; approximately 11 persons/yr
- 11 h
- 136.5 h
- I(15) = 0.00098I0 or approximately 0.1% of I0
- 15,963 years
- T(1) = 36.76°F; approximately 3.06 min
- approximately 82.1 s; approximately 145.7 s
- 390°F
- approximately 1.6 h
- A(t) = 200 − 170e−t/50
- A(t) = 1000 − 1000e−t/100
- 64.38 lb
- i(t) = − e−500t; i → as t → ∞
- q(t) = − e−50t; i(t) = e−50t
- (a)
(b) v(t) → as t → ∞
(c)
- (a)
(b) 33 min
- (a) P(t) = P0
- (a) As t → ∞, x(t) → r/k.
(b) x(t) = r/k − (r/k)e−kt; (ln 2)/k
- (a) tb = 50 s
(b) 70 m/s
(c) 1250 m
(e)
- (a) v(0) = 5 m3 , v(t) = 0.8 + 4.2e−0.2t, approximately 0.117%
(b) in approximately 11.757 min or at approximately 9:12 A.M.
(c) approximately 829.114 m3/min
Exercises 2.8, Page 92
- (a) N = 2000
(b) N(t) = ; N(10) = 1834
- 1,000,000; 52.9 mo
- For 0 < P0 < 1, time of extinction is
t = − ln .
-
time of extinction is
- where c = (a/b) − ln P0
- 29.3 g; X → 60 as t → ∞; 0 g of A and 30 g of B
- (a) h(t) = ;
(b) 576 s or 30.36 min
- (a) approximately 858.65 s or 14.31 min
(b) 243 s or 4.05 min
- (a)
where
(b)
(c)
where
- (a) where ρ is the weight density of water
(b)
(c)
- (a) W = 0 and W = 2
(b) W(x) = 2 sech2 (x − c1)
(c) W(x) = 2 sech2 x
Exercises 2.9, Page 101
- 5, 20, 147 days. The time when y(t) and z(t) are the same makes sense because most of A and half of B are gone, so half of C should have been formed.
- (a)
(b) approximately 1.25 × 109 years
(c)
(d) 10.5% of P0, 89.5% of P0
- = 6 − x1 + x2
= x1 − x2
- (a)
(b) x1(t) + x2(t) = 150; x2(30) ≈ 47.4 lb
- L1 + (R1 + R2)i2 + R1i3 = E(t)
L2 + R1i2 + (R1 + R3)i3 = E(t)
- i(0) = i0, s(0) = n − i0, r(0) = 0; because the population is assumed to be constant
Chapter 2 in Review, Page 104
- −A/k, a repeller for k > 0, an attractor for k < 0
- true
- false
- = (y − 1)2 (y − 3)2
- semi-stable for n even and unstable for n odd; semistable for n even and asymptotically stable for n odd
- 2x + sin 2x = 2 ln(y2 + 1) + c
- (6x + 1)y3 = −3x3 + c
- Q = ct−1 + t4 (−1 + 5 ln t)
- y = + c(x2 + 4)−4
- y = csc x, (π, 2π)
- (b)
- P(45) = 8.99 billion
- (b) approximately 3257 BC
- (a)
(b)
- no
- x = −y + 1 + c2e−y
- (a) k = 0.083 seems to work well;
k = 0.1063 and k = 0.0823
Exercises 3.1, Page 120
- y = ex − e−x
- y = 3x − 4x ln x
- (−∞, 2)
- (a)
(b)
- (a) y = ex cos x − ex sin x
(b) no solution
(c) y = ex cos x + e−π/2ex sin x
(d) y = c2ex sin x, where c2 is arbitrary
- dependent
- dependent
- dependent
- independent
- The functions satisfy the DE and are linearly independent on the interval since W(e−3x, e4x) = 7ex ≠ 0; y = c1e−3x + c2e4x.
- The functions satisfy the DE and are linearly independent on the interval since W(ex cos 2x, ex sin 2x) = 2e2x ≠ 0; y = c1ex cos 2x + c2ex sin 2x.
- The functions satisfy the DE and are linearly independent on the interval since W(x3 , x4) = x6 ≠ 0; y = c1x3 + c2x4 .
- The functions satisfy the DE and are linearly independent on the interval since W(x, x−2 , x−2 ln x) = 9x−6 ≠ 0; y = c1x + c2x−2 + c3x−2 ln x.
- (b) yp = x2 + 3x + 3e2x; yp = −2x2 − 6x − e2x
Exercises 3.2, Page 124
- y2 = xe2x
- y2 = sin 4x
- y2 = sinh x
- y2 = xe2x/3
- y2 = x4 ln | x |
- y2 = 1
- y2 = x cos(ln x)
- y2 = x2 + x + 2
- y2 = x2 ex
- y2 = e2x, yp = −
- y2 = e2x, yp = e3x
Exercises 3.3, Page 130
- y = c1 + c2e−x/4
- y = c1e3x + c2e−2x
- y = c1e−4x + c2xe−4x
- y = c1e2x/3 + c2e−x/4
- y = c1 cos 3x + c2 sin 3x
- y = e2x(c1 cos x + c2 sin x)
- y = c1 + c2e−x + c3e5x
- y = c1e−x + c2e3x + c3xe3x
- u = c1et + e−t(c2 cos t + c3 sin t)
- y = c1e−x + c2xe−x + c3x2 e−x
- u = c1er + c2rer + c3e−r + c4re−r + c5e−5r
- y = c1 + c2x + c3x2 + c4x3 + c5ex cos 2x + c6ex sin 2x
- y = 2 cos 4x − sin 4x
- y = −e−(t − 1) + e5(t − 1)
- y = 0
- y = − e−6x + xe−6x
- y = e5x − xe5x
- y = 0
Exercises 3.4, Page 139
- y = c1e−x + c2e−2x + 3
- y = c1e5x + c2xe5x + x +
- y = c1e−2x + c2xe−2x + x2 − 4x +
- y = c1 + c2ex + 3x
- y = c1ex/2 + c2xex/2 + 12 + x2 ex/2
- y = c1 cos 2x + c2 sin 2x − x cos 2x
- y = c1 cos x + c2 sin x − x2 cos x + x sin x
- y = c1ex cos 2x + c2ex sin 2x + xex sin 2x
- y = c1e−x + c2xe−x − cos x + sin 2x − cos 2x
- y = c1 + c2x + c3e6x − x2 − cos x + sin x
- y = c1ex + c2xex + c3x2 ex − x − 3 − x3 ex
- y = c1 cos x + c2 sin x + c3x cos x + c4x sin x + x2 − 2x − 3
- y = −200 + 200e−x/5 − 3x2 + 30x
- y = −10e−2x cos x + 9e−2x sin x + 7e−4x
- y = 11 − 11ex + 9xex + 2x − 12x2 ex + e5x
- y = 6 cos x − 6(cot 1) sin x + x2 − 1
Exercises 3.5, Page 144
- y = c1 cos x + c2 sin x + x sin x + cos x ln | cos x |
- y = c1 cos x + c2 sin x −x cos x
- y = c1 cos x + c2 sin x + − cos 2x
- y = c1ex + c2e−x + x sinh x
- y = c3 + c2e−x + 3x
- y = c1e−x + c2e−2x + (e−x + e−2x) ln (1 + ex)
- y = c1e−2x + c2e−x − e−2x sin ex
- y = c1e−t + c2te−t + t2 e−t ln t − t2 e−t
- y = c1ex sin x + c2ex cos x + xex sin x
+ ex cos x ln | cos x |
- y = e−x/2 + ex/2 + x2 ex/2 − xex/2
- y = e−4x + e2x − e−2x + e−x
- y = c1x−1/2 cos x + c2x−1/2 sin x + x−1/2
- y = c1 + c2 cos x + c3 sin x
− ln | cos x | −sin x ln | sec x + tan x |
Exercises 3.6, Page 150
- y = c1x−1 + c2x2
- y = c1 + c2 ln x
- y = c1 cos(2 ln x) + c2 sin(2 ln x)
- y = c1 cos( ln x) + c2 sin( ln x)
- y = c1x−2 + c2x−2 ln x
- y = c1 + c2x + c3x2 + c4x−3
- y = c1 + c2x5 + x5 ln x
- y = c1x + c2x ln x + x(ln x)2
- y = c1x−1 + c2x − ln x
- y = 2 − 2x−2
- y = cos(ln x) + 2 sin(ln x)
- y = − ln x + x2
- any real constant
- y = c1x−10 + c2x2
- y = c1x−1 + c2x−8 + x2
- y = x2 [c1 cos(3 ln x) + c2 sin(3 ln x)] + + x
- y = 2(−x)1/2 − 5(−x)1/2 ln(−x), x < 0
- (a)
(b)
Exercises 3.7, Page 155
- y = ln | cos(c1 − x) | + c2
- y3 − c1 y = x + c2
- (b)
(c)
- y = 1 + x + x2 + x3 + x4 + x5 +
- y = 1 + x −x2 + x3 −x4 + x5 +
Exercises 3.8, Page 169
- x(t) = − cos 4t
- (a)
(b) 4 ft/s; downward
(c) t = , n = 0, 1, 2, …
- (a) the 20-kg mass
(b) the 20-kg mass; the 50-kg mass
(c) t = nπ, n = 0, 1, 2, …; at the equilibrium position; the 50-kg mass is moving upward whereas the 20-kg mass is moving upward when n is even and downward when n is odd.
- (a)
(b)
(c)
- (a)
(b) ft;
(c) 15 cycles
(d) 0.721 s
(e) + 0.0927, n = 0, 1, 2, …
(f) x(3) = −0.597 ft
(g) x′(3) = −5.814 ft/s
(h) x″(3) = 59.702 ft/s2
(i) ±8 ft/s
(j) 0.1451 + ; 0.3545 + , n = 0, 1, 2, …
(k) 0.3545 + , n = 0, 1, 2, …
- Compared to a single-spring system with spring constant k, the parallel-spring system is more stiff.
- (a) above
(b) heading upward
- (a) below
(b) heading upward
- s; s, x() = e−2 ; that is, the weight is approximately 0.14 ft below the equilibrium position.
- (a) x(t) = e−2t − e−8t
(b) x(t) = −e−2t + e−8t
- (a) x(t) = e−2t(−cos 4t − sin 4t)
(b) x(t) = e−2t sin(4t + 4.249)
(c) t = 1.294 s
- (a) β >
(b) β =
(c) 0 < α <
- x(t) = e−4t + te−4t − cos 4t
- x(t) = − cos 4t + sin 4t + e−2t cos 4t − 2e−2t sin 4t
- (a) m = −k(x − h) 2 or
where 2λ = β/m and ω2 = k/m
(b) x(t) = e−2t(− cos 2t − sin 2t) + cos t + sin t
- x(t) = −cos 2t − sin 2t + t sin 2t + t cos 2t
- (b)
- 4.568 C; 0.0509 s
- q(t) = 10 − 10e−3t(cos 3t + sin 3t)
i(t) = 60e−3t sin 3t; 10.432 C
- qp = sin t + cos t, ip = cos t − sin t
- q(t) = −e−10t(cos 10t + sin 10t) + ; C
Exercises 3.9, Page 178
- (a) (6L2 x2 − 4Lx3 + x4)
- (a) (3L2 x2 − 5Lx3 + 2x4)
- (a)
(c)
- (a)
(b)
(c)
- λn = n2 , n = 1, 2, 3, …; yn = sin nx
- λn = , n = 1, 2, 3, …;
y = cos
- λn = n2 , n = 0, 1, 2, …; yn = cos nx
- λn = , n = 1, 2, 3, …; yn = e−x sin
- λn = n2 , n = 1, 2, 3, …; yn = sin(n ln x)
- x = L/4, x = L/2, x = 3L/4
- ωn = , n = 1, 2, 3, …; yn = sin
- (a)
(b)
Exercises 3.10, Page 192
- y = −x sin x − cos x ln
- y = (cos 1 − 2)e−x + (1 + sin 1 − cos 1)e−2x
− e−2x sin ex
- y = 4x − 2x2 − x ln x
- ,
- ,
- yp(x) = −ex cos x − ex sin x + ex
Exercises 3.11, Page 199
- + x = 0
- (a) x(t) = 5
(c)
- (a)
- (a) xy″ = r When t = 0, x = a, y = 0, dy/dx = 0.
(b) When r ≠ 1,
When r = 1,
(c) The paths intersect when r < 1.
Exercises 3.12, Page 207
- x = c1et + c2tet
y = (c1 − c2)et + c2tet
- x = c1 cos t + c2 sin t + t + 1
y = c1 sin t − c2 cos t + t − 1
- x = c1 sin t + c2 cos t − 2c3 sin t − 2c4 cos t
y = c1 sin t + c2 cos t + c3 sin t + c4 cos t
- x = c1e2t + c2e−2t + c3 sin 2t + c4 cos 2t + et
y = c1e2t + c2e−2t − c3 sin 2t − c4 cos 2t − et
- x = c1 − c2 cos t + c3 sin t + e3t
y = c1 + c2 sin t + c3 cos t − e3t
- x = c1et + c2e−t/2 cos t + c3e−t/2 sin t
+
- x = c1e4t + et
y = −c1e4t + c2 + 5et
- x = c1 + c2t + c3et + c4e−t − t2
y = (c1 − c2 + 2) + (c2 + 1)t + c4e−t − t2
- x = c1et + c2e−t/2 sin t + c3e−t/2 cos t
y = c1et + (−c2 − c3) e−t/2 sin t
+ (c2 − c3) e−t/2 cos t
z = c1et + (−c2 + c3) e−t/2 sin t
+ (− c2 − c3) e−t/2 cos t
- x = −6c1e−t − 3c2e−2t + 2c3e3t
y = c1e−t + c2e−2t + c3e3t
z = 5c1e−t + c2e−2t + c3e3t
- x = e−3t+3 − te−3t+3
y = −e−3t+3 + 2te−3t+3
- mx″ = 0
my″ = −mg;
x = c1t + c2
y = −gt2 + c3t + c4
Chapter 3 in Review, Page 208
- y = 0
- false
- 8 ft
- (−∞, ∞); (0, ∞)
- y = c1e3x + c2e−5x + c3xe−5x + c4ex + c5 xex + c6 x2ex,
y = c1x3 + c2x−5 + c3x−5 ln x + c4x + c5 x ln x
+ c6 x(ln x)2
- y = c1 + c2e−5x + c3 xe−5x
- y = e3x/2 (c2 cos x + c3 sin x) + x3
+ x2 + x −
- y = c1 + c2e2x + c3e3x + sin x − cos x + x
- y = ex (c1 cos x + c2 sin x) − ex cos x ln | sec x + tan x |
- y = c1x−1/3 + c2x1/2
- y = c1x2 + c2x3 + x4 − x2 ln x
- (a) y = c1 cos ωx + c2 sin ωx + A cos αx + B sin αx, ω ≠ α, y = c1 cos ωx + c2 sin ωx + Ax cos ωx + Bx sin ωx, ω = α
(b) y = c1e−ωx + c2eωx + Aeαx, ω ≠ α,
y = c1e−ωx + c2eωx + Axeωx, ω = α
- (a) y = c1 cosh x + c2 sinh x + c3 x cosh x + c4 x sinh x
(b) yp = Ax2 cosh x + Bx2 sinh x
- y = ex−π cos x
- y = ex − e−x − x − sin x
- y = x2 + 4
- x = −c1et − c2e2t +
y = c1et + c2e2t − 3
- x = c1et + c2e5t + tet
y = −c1et + 3c2e5t − tet + 2et
- 14.4 lb
- 0 < m ≤ 2
- (a) q(t) = − sin 100t + sin 50t
(b) i(t) = − cos 100t + cos 50t
(c) t = , n = 0, 1, 2, …
- m + kx = 0
- (a)
(b)
(c) the amplitude and period of the shorter pendulum are half that of the longer pendulum
- (a)
Exercises 4.1, Page 223
- Use sinh kt = to show that
{sinh kt} =
Exercises 4.2, Page 231
- t2
- t − 2t4
- 1 + 3t + t2 + t3
- t − 1 + e2t
- e−t/4
- sin 7t
- cos
- 2 cos 3t − 2 sin 3t
- − e−3t
- e−3t + et
- 0.3e0.1t + 0.6e−0.2t
- e2t − e3t + e6t
- − cos t
- −4 + 3e−t + cos t + 3 sin t
- sin t − sin 2t
- y = −1 + et
- y = e4t + e−6t
- y = e−t − e−4t
- y = 10 cos t + 2 sin t − sin t
- y = −e−t/2 + e−2t + et + e−t
- y = e−t − e−3t cos 2t + e−3t sin 2t
Exercises 4.3, Page 240
- e3t sin t
- e−2t cos t − 2e−2t sin t
- e−t − te−t
- 5 − t − 5e−t − 4te−t − t2 e−t
- y = te−4t + 2 e−4t
- y = e−t + 2te−t
- y = t + − e3t + te3t
- y = −e3t sin 2t
- y = − et cos t + et sin t
- y = (e + 1) te−t + (e − 1) e−t
- −sin t (t − π)
- (t − 1) − e−(t−1) (t − 1)
- (c)
- (f)
- (a)
- f(t) = 2 − 4 (t − 3); {f(t)} = e−3s
- f(t) = t2 (t − 1); {f(t)} =
- f(t) = t − t (t − 2); {f(t)} =
- f(t) = (t − a) − (t − b); {f(t)} =
- y = [5 − 5e−(t−1)] (t − 1)
- y = − + t + e−2t − (t − 1)
− (t − 1) (t − 1) + e−2(t−1) (t − 1)
- y = cos 2t − sin 2(t − 2π) (t − 2π)
+ sin(t − 2π) (t − 2π)
- y = sin t + [1 − cos(t − π)] (t − π)
−[1 − cos(t − 2π)] (t − 2π)
- x(t) = t − sin 4t − (t − 5) (t − 5)
+ sin 4(t − 5) (t − 5) − (t − 5)
+ cos 4(t − 5) (t − 5)
- q(t) = (t − 3) − e−5(t−3) (t − 3)
- (a) i(t) = e−10t − cos t + sin t
− e−10(t−3π/2)
+ cos
+ sin
(b) imax ≈ 0.1 at t ≈ 1.6, imin ≈ −0.1 at t ≈ 4.7
-
-
- (a) = k(T − 70 − 57.5t − (230 − 57.5t) (t − 4))
Exercises 4.4, Page 253
- y = −e−t + cos t − t cos t + t sin t
- y = 2 cos 3t + sin 3t + t sin 3t
- y = sin 4t + t sin 4t
− (t − π) sin 4(t − π) (t − π)
- y = t3 + ct2
- et − 1
- et − t2 − t − 1
- f(t) = sin t
- f(t) = −e−t + et + tet + t2 et
- f(t) = e−t
- f(t) = e2t + e−2t + cos 2t + sin 2t
- y(t) = sin t − t sin t
- i(t) = 100[e−10(t−1) − e−20(t−1)] (t − 1)
− 100[e−10(t−2) − e−20(t−2)] (t − 2)
- i(t) = (1 − e−Rt/L)
+ (1 − e−R(t−n)/L) (t − n)
- x(t) = 2(1 − e−t cos 3t − e−t sin 3t)
+ 4 [1 − e−(t−nπ) cos 3(t − nπ)
− e−(t−nπ) sin 3(t − nπ)] (t − nπ)
Exercises 4.5, Page 259
- y = e3(t−2) (t − 2)
- y = sin t + sin t (t − 2π)
- y = −cos t + cos t
- y = − e−2t + [ − e−2(t−1)] (t − 1)
- y = e−2(t−2π) sin t (t − 2π)
- y = e−2t cos 3t + e−2t sin 3t
+ e−2(t−π) sin 3(t − π) (t − π)
+ e−2(t−3π) sin 3(t − 3π) (t − 3π)
Exercises 4.6, Page 263
- x = −e−2t + et
y = e−2t + et
- x = −cos 3t − sin 3t
y = 2 cos 3t − sin 3t
- x = −2e3t + e2t −
y = e3t − e2t −
- x = −t − sin t
y = −t + sin t
- x = 8 + t3 + t4
y = − t3 + t4
- x = t2 + t + 1 − e−t
y = − + e−t + te−t
- (b) i2 = − e−900 t
i3 = − e−900t
(c) i1 = 20 − 20e−900t
- i2 = −e−2t + e−15t + cos t + sin t
i3 = e−2t + e−15t − cos t + sin t
- i1 = − e−100t cosh 50t − e−100t sinh 50t
i2 = − e−100t cosh 50t − e−100t sinh 50t
- (a)
(b) is a quadratic function, for a fixed value of θ its graph is a parabola.
(c) Solve y(x) = 0 to find the range R. To prove the complementary-angle property, show that R(θ) = R(π/2 − θ).
(d) Solve y′(x) = 0 and find the corresponding value of y(x).
(e) For θ = 38°: range is 2728.96 ft, max. height is 533.02 ft
For θ = 52°: range is 2728.96 ft, max. height is 873.23 ft
(f) For θ = 38°: time to hit the ground is t ≈ 11.5437 s, max. height occurs at t ≈ 5.7718 s
For θ = 52°: time to hit the ground is t ≈ 14.7752 s, max. height occurs at t ≈ 7.3876 s
(g)
- (a)
Chapter 4 in Review, Page 266
- false
- true
- t5
- t2 e5t
- e5t cos 2t + e5t sin 2t
- cos π(t − 1) (t − 1) + sin π(t − 1) (t − 1)
- −5
- e−k(s−a) F(s − a)
- t
- f(t) (t − t0)
- f(t − t0) (t − t0)
- f(t) = t − (t − 1) (t − 1) − (t − 4);
{f(t)} = e−s − e−4s;
{e tf (t)} = e−(s−1)
− e−4(s−1)
- f(t) = 2 + (t − 2) (t − 2);
{f(t)} = e−2s;
{e tf (t)} = e−2(s−1)
- y = 5te t + t2 et
- y = − + t + e−t − e−5t − (t − 2)
− (t − 2) (t − 2) + e−(t−2) (t − 2)
− e−5(t−2) (t − 2)
- y = 1 + t + t2
- x = − + e−2t + e2t
y = t + e−2t − e2t
- i(t) = −9 + 2t + 9e−t/5
Exercises 5.1, Page 280
- R = , [−, )
- R = 10, (−5, 15)
- x − x3 + x5 − x7 +
- 1 + x2 + x4 + x6 + , (−π/2, π/2)
- 2c1 + (k + 1)ck11 + 6ck21]xk
- 5; 4
Exercises 5.2, Page 288
- x = 0, irregular singular point
- x = −3, regular singular point; x = 3, irregular singular point
- x = 0, 2i, −2i, regular singular points
- x = −3, 2, regular singular points
- x = 0, irregular singular point; x = −5, 5, 2, regular singular points
- for x = 1: p(x) = 5, q(x) =
for x = −1: p(x) = , q(x) = x2 + x
- r1 = , r2 = −1
- r1 = , r2 = 0
- r1 = , r2 = 0
- r1 = , r2 = 0
- r1 = , r2 = 0
- r1 = , r2 =
- r1 = 0, r2 = −1
= [C1 sinh x + C2 cosh x]
- r1 = 1, r2 = 0
y(x) = C1x + C2 [x ln x − 1 + x2
+ x3 + x4 + ]
- r1 = r2 = 0
where y1(x) = xn = ex
- (b)
(c)
Exercises 5.3, Page 300
- y = c1 J1/3(x) + c2 J−1/3(x)
- y = c1 J5/2(x) + c2 J−5/2(x)
- y = c1 J0(x) + c2Y0(x)
- (b)
- (a)
Chapter 5 in Review, Page 304
- false
- r1 = , r2 = 0
y1(x) = C1x1/2 [1 − x + x2 − x3 + ]
y2(x) = C2 [1 − x + x2 − x3 + ]
- y1(x) = c0 [1 + x2 + x3 + x4 + ]
y2(x) = c1 [x + x3 + x4 + ]
- r1 = 3, r2 = 0
- y(x) = 3[1 − x2 + x4 − x6 + ] − 2[x − x3
+ x5 − x7 + ]
- π
- x = 0 is an ordinary point
- (a) y = c1 J3/2(4x) + c2Y3/2(4x)
(b) y = c1 I3(6x) + c2K3(6x)
- y(x) = c0y1(x) + c1y2(x), where
Exercises 6.1, Page 310
- for h = 0.1, y5 = 2.0801; for h = 0.05, y10 = 2.0592
- for h = 0.1, y5 = 0.5470; for h = 0.05, y10 = 0.5465
- for h = 0.1, y5 = 0.4053; for h = 0.05, y10 = 0.4054
- for h = 0.1, y5 = 0.5503; for h = 0.05, y10 = 0.5495
- for h = 0.1, y5 = 1.3260; for h = 0.05, y10 = 1.3315
- for h = 0.1, y5 = 3.8254; for h = 0.05, y10 = 3.8840;
at x = 0.5 the actual value is y(0.5) = 3.9082
- (a) y1 = 1.2
(b)
(c) Actual value is y(0.1) = 1.2214. Error is 0.0214.
(d) If h = 0.05, y2 = 1.21.
(e) Error with h = 0.1 is 0.0214. Error with h = 0.05 is 0.0114.
- (a) y1 = 0.8
(b) y″(c) = 5e–2c = 0.025e–2c ≤ 0.025 for 0 ≤ c ≤ 0.1
(c) Actual value is y(0.1) = 0.8234. Error is 0.0234.
(d) If h = 0.05, y2 = 0.8125.
(e) Error with h = 0.1 is 0.0234. Error with h = 0.05 is 0.0109.
- (a) Error is 19h2 e–3(c–1).
(b) y″(c) ≤ 19(0.1)2 (1) = 0.19
(c) If h = 0.1, y5 = 1.8207. If h = 0.05, y10 = 1.9424.
(d) Error with h = 0.1 is 0.2325. Error with h = 0.05 is 0.1109.
- (a) Error is .
(b)
(c) If h = 0.1, y5 = 0.4198. If h = 0.05, y10 = 0.4124.
(d) Error with h = 0.1 is 0.0143. Error with h = 0.05 is 0.0069.
Exercises 6.2, Page 315
- y5 = 3.9078; actual value is y(0.5) = 3.9082
- y5 = 2.0533
- y5 = 0.5463
- y5 = 0.4055
- y5 = 0.5493
- y5 = 1.3333
- (a) 35.7678
(c) v(t) = v(5) = 35.7678
- (a) h = 0.1, y4 = 903.0282;
h = 0.05, y8 = 1.1 × 1015
- (a) y1 = 0.82341667
(b) y(5)(c) = 40e–2c ≤ 40e2(0)
= 3.333 × 10–6
(c) Actual value is y(0.1) = 0.8234134413. Error is 3.225 × 10–6 ≤ 3.333 × 10–6.
(d) If h = 0.05, y2 = 0.82341363.
(e) Error with h = 0.1 is 3.225 × 10–6. Error with h = 0.05 is 1.854 × 10–7.
- (a) y(5)(c)
(b) = 2.0000 × 10–6
(c) From calculation with h = 0.1, y5 = 0.40546517.
From calculation with h = 0.05, y10 = 0.40546511.
Exercises 6.3, Page 318
- y(x) = −x + ex; actual values are y(0.2) = 1.0214, y(0.4) = 1.0918, y(0.6) = 1.2221, y(0.8) = 1.4255; approximations are given in Example 1
- y4 = 0.7232
- for h = 0.2, y5 = 1.5569; for h = 0.1, y10 = 1.5576
- for h = 0.2, y5 = 0.2385; for h = 0.1, y10 = 0.2384
Exercises 6.4, Page 322
- y(x) = −2e2x + 5xe2x; y(0.2) = −1.4918, y2 = −1.6800
- y1 = −1.4928, y2 = −1.4919
- y1 = 1.4640, y2 = 1.4640
- x1 = 8.3055, y1 = 3.4199; x2 = 8.3055, y2 = 3.4199
- x1 = −3.9123, y1 = 4.2857; x2 = −3.9123, y2 = 4.2857
- x1 = 0.4179, y1 = −2.1824; x2 = 0.4173, y2 = −2.1821
Exercises 6.5, Page 325
- y1 = −5.6774, y2 = −2.5807, y3 = 6.3226
- y1 = −0.2259, y2 = −0.3356, y3 = −0.3308, y4 = −0.2167
- y1 = 3.3751, y2 = 3.6306, y3 = 3.6448, y4 = 3.2355, y5 = 2.1411
- y1 = 3.8842, y2 = 2.9640, y3 = 2.2064, y4 = 1.5826, y5 = 1.0681, y6 = 0.6430, y7 = 0.2913
- y1 = 0.2660, y2 = 0.5097, y3 = 0.7357, y4 = 0.9471, y5 = 1.1465, y6 = 1.3353, y7 = 1.5149, y8 = 1.6855, y9 = 1.8474
- y1 = 0.3492, y2 = 0.7202, y3 = 1.1363, y4 = 1.6233, y5 = 2.2118, y6 = 2.9386, y7 = 3.8490
- (c) y0 = −2.2755, y1 = −2.0755, y2 = −1.8589, y3 = −1.6126, y4 = −1.3275
Chapter 6 in Review, Page 326
- Comparison of Numerical Methods with h = 0.1
Comparison of Numerical Methods with h = 0.05
- Comparison of Numerical Methods with h = 0.1
Comparison of Numerical Methods with h = 0.05
- h = 0.2: y(0.2) ≈ 3.2; h = 0.1: y(0.2) ≈ 3.23
- x(0.2) ≈ 1.62, y(0.2) ≈ 1.84
Exercises 7.1, Page 332
- 6i + 12j; i + 8j; 3i;; 3
- ‹12, 0›; ‹4, −5›; ‹4, 5›;;
- −9i + 6j; − 3i + 9j; − 3i − 5j; 3;
- −6i + 27j; 0; −4i + 18j; 0;
- ‹6, −14›; ‹2, 4›
- 10i − 12j; 12i − 17j
- ‹20, 52›; ‹−2, 0›
- 2i + 5j
- 2i + 2j
- (1, 18)
- (a), (b), (c), (e), (f)
- ‹6, 15›
- ‹0, −1›; ‹0, 1›
- −(a + b)
- (b) approximately 31°
Exercises 7.2, Page 338
- −5
- The set {(x, y, 5)|x, y real numbers} is a plane perpendicular to the z-axis, 5 units above the xy-plane.
- The set {(2, 3, z)|z a real number} is a line perpendicular to the xy-plane at (2, 3, 0).
- (0, 0, 0), (2, 0, 0), (2, 5, 0), (0, 5, 0), (0, 0, 8), (2, 0, 8), (2, 5, 8), (0, 5, 8)
- (–2, 5, 0), (–2, 0, 4), (0, 5, 4); (–2, 5, −2); (3, 5, 4)
- the union of the coordinate planes
- the point (−1, 2, −3)
- the union of the planes z = −5 and z = 5
- 7; 5
- right triangle
- isosceles
- d(P1, P2) + d(P1, P3) = d(P2, P3)
- 6 or −2
- (4, , )
- P1(– 4, −11, 10)
- ‹– 3, −6, 1›
- ‹2, 1, 1›
- ‹2, 4, 12›
- ‹–11, −41, −49›
- 6
- ‹– , , − ›
- 4i − 4j + 4k
Exercises 7.3, Page 343
- 12
- −16
- 48
- 29
- 25
- ‹– , , 2›
- (a) and (f), (c) and (d), (b) and (e)
- ‹, − , 1›
- 1.11 radians or 63.43°
- 1.89 radians or 108.43°
- cos α = 1/, cos α = 2/, cos γ = 3/; α = 74.5°, α = 57.69°, γ = 36.7°
- cos α = , cos α = 0, cos γ = −/2; α = 60°, α = 90°, γ = 150°
- 0.955 radian or 54.74°; 0.616 radian or 35.26°
- α = 58.19°, α = 42.45°, γ = 65.06°
- −6/11
- 72/109
- ‹– , ›
- ‹– , , ›
- ‹, ›
- 1000 ft-lb
- 0; 150 N-m
- approximately 1.80 angstroms
Exercises 7.4, Page 350
- −5i − 5j + 3k
- ‹–12, −2, 6›
- −5i + 5k
- ‹–3, 2, 3›
- 0
- 6i + 14j + 4k
- −3i −2j − 5k
- −i + j + k
- 2k
- i + 2j
- −24k
- 5i − 5j − k
- 0
- −j
- 0
- 6
- 12i − 9j + 18k
- −4i + 3j − 6k
- −21i + 16j + 22k
- −10
- 14 square units
- square unit
- square units
- 10 cubic units
- coplanar
- 32; in the xy-plane, 30° from the positive x-axis in the direction of the negative y-axis; 16i − 16j
- A = i − k, B = j − k, C = 2k
Exercises 7.5, Page 357
- ‹x, y, z› = ‹1, 2, 1› + t ‹2, 3, −3›
- ‹x, y, z› = ‹, −, 1› + t ‹–2, 3, −›
- ‹x, y, z› = ‹1, 1, −1› + t ‹5, 0, 0›
- x = 2 + 4t, y = 3 − 4t, z = 5 + 3t
- x = 1 + 2t, y = −2t, z = −7t
- x = 4 + 10t, y = + t, z = + t
- x = 4 + 3t, y = 6 + t, z = −7 −t;
- x = 5t, y = 9t, z = 4t;
- x = 6 + 2t, y = 4 − 3t, z = −2 + 6t
- x = 2 + t, y = −2, z = 15
- Both lines pass through the origin and have parallel direction vectors.
- (0, 5, 15), (5, 0, ), (10, −5, 0)
- (2, 3, −5)
- Lines do not intersect.
- 40.37°
- x = 4 − 6t, y = 1 + 3t, z = 6 + 3t
- 2x − 3y + 4z = 19
- 5x − 3z = 51
- 6x + 8y − 4z = 11
- 5x − 3y + z = 2
- 3x − 4y + z = 0
- The points are collinear.
- x + y − 4z = 25
- z = 12
- −3x + y + 10z = 18
- 9x − 7y + 5z = 17
- 6x − 2y + z = 12
- orthogonal: (a) and (d), (b) and (c), (d) and (f), (b) and (e); parallel: (a) and (f), (c) and (e)
- (c) and (d)
- x = 2 + t, y = − t, z = t
- x = − t, y = − t, z = t
- (– 5, 5, 9)
- (1, 2, −5)
- x = 5 + t, y = 6 + 3t, z = −12 + t
- 3x − y − 2z = 10
Exercises 7.6, Page 364
- not a vector space, axiom (vi) is not satisfied
- not a vector space, axiom (x) is not satisfied
- vector space
- not a vector space, axiom (ii) is not satisfied
- vector space
- a subspace
- not a subspace
- a subspace
- a subspace
- not a subspace
- (b) a = 7u1 − 12u2 + 8u3
- linearly dependent
- linearly independent
- f is discontinuous at x = −1 and at x = −3.
Exercises 7.7, Page 370
- where
- where
- (a)
(b)
- (a)
(b)
Chapter 7 in Review, Page 371
- true
- false
- true
- true
- true
- 9i + 2j + 2k
- 5i
- 14
- −6i + j − 7k
- (4, 7, 5)
- (5, 6, 3)
- 12, −8, and 6
- 2 units
- (i − j − 3k)/
- 2
- i + j + k
- sphere; plane
- The direction vectors are orthogonal and the point of intersection is (3, −3, 0).
- 14x − 5y − 3z = 0
- 30 N-m
- approximately 153 lb
- not a vector space
- a subspace; 1, x
Exercises 8.1, Page 381
- 2 × 4
- 3 × 3
- 3 × 4
- not equal
- not equal
- x = 2, y = 4
- c23 = 9, c12 = 12
- 4 × 5
- AB is not necessarily the same as BA.
- a11x1 + a12x2 = b1
a21x1 + a22x2 = b2
- (b) MR =
MP =
(c) xS = ≈ 1.4072,
yS = ≈ 0.2948,
zS = ≈ 0.9659
Exercises 8.2, Page 394
- x1 = 4, x2 = −7
- x1 = − , x2 =
- x1 = 0, x2 = 4, x3 = −1
- x1 = −t, x2 = t, x3 = 0
- inconsistent
- x1 = 0, x2 = 0, x3 = 0
- x1 = −2, x2 = −2, x3 = 4
- x 1 = 1, x2 = 2 − t, x3 = t
- x1 = 0, x2 = 1, x3 = 1, x4 = 0
- inconsistent
- x1 = 0.3, x2 = −0.12, x3 = 4.1
- 2Na + 2H2O → 2NaOH + H2
- Fe3O4 + 4C → 3Fe + 4CO
- 3Cu + 8NHO3 → 3Cu(NO3)2 + 4H2O + 2NO
- i1 = , i2 = , i3 =
- Interchange row 1 and row 2 in I3.
- Multiply the second row of I3 by c and add to the third row.
- EA =
- EA =
Exercises 8.3, Page 399
- 2
- 1
- 3
- 2
- 3
- linearly independent
- linearly independent
- 5
- rank(A) = 2
Exercises 8.4, Page 405
- 9
- 1
- 2
- 10
- −7
- 17
- λ2 − 3λ − 4
- −48
- 62
- 0
- −85
- −x + 2y − z
- −104
- 48
- λ1 = −5, λ2 = 7
Exercises 8.5, Page 411
- Theorem 8.5.4
- Theorem 8.5.7
- Theorem 8.5.5
- Theorem 8.5.3
- Theorem 8.5.1
- −5
- −5
- 5
- 80
- −105
- 0
- −15
- −9
- 0
- 16
Exercises 8.6, Page 420
- singular matrix
- x = 5
- x1 = 6, x2 = −2
- x1 = , x2 = −
- x1 = 2, x2 = 4, x3 = −6
- x1 = 21, x2 = 1, x3 = −11
- x1 = , x2 = ; x1 = 6, x2 = 16; x1 = −2, x2 = −7
- System has only the trivial solution.
- System has nontrivial solutions.
- (c) i1 = ,
i2 = ,
i3 =
Exercises 8.7, Page 424
- x1 = −, x2 =
- x1 = 0.1, x2 = −0.3
- x = 4, y = −7
- x1 = −4, x2 = 4, x3 = −5
- u = 4, v = , w = 1
- k =
- T1 ≈ 450.8 lb, T2 ≈ 423 lb
Exercises 8.8, Page 432
- K3, λ = −1
- K3, λ = 0
- K2, λ = 3; K3, λ = 1
- λ1 = 6, λ2 = 1, K1 = , K2 = ; nonsingular
- λ1 = λ2 = −4, K1 = ; nonsingular
- λ1 = 3i, λ2 = −3i
K1 = , K2 = ; nonsingular
- λ1 = 4, λ2 = −5,
K1 = , K2 = ; nonsingular
- λ1 = 0, λ2 = 4, λ3 = −4,
K1 = , K2 = , K3 = ; singular
- λ1 = λ2 = λ3 = −2,
K1 = , K2 = ; nonsingular
- λ1 = −1, λ2 = i, λ3 = −i,
K1 = , K2 = , K3 = ; nonsingular
- λ1 = 1, λ2 = 5, λ3 = −7,
K1 = , K2 = , K3 = ; nonsingular
- Eigenvalues of A are λ1 = 6, λ2 = 4; eigenvalues of A−1 are corresponding eigenvectors for both A and A−1 are
- Eigenvalues of A are λ1 = 5, λ2 = 4, λ3 = 3, eigenvalues of A−1 are corresponding eigenvectors for both A and A−1 are
Exercises 8.9, Page 436
- (a) 4m, m > 1
(b) Am = 0, m > 1
(c)
- (b), (c), (d), (e), (f)
Exercises 8.10, Page 443
- (b) λ1 = −4, λ2 = −1, λ3 = 16
- (b) λ1 = 18, λ2 = λ3 = −8
- orthogonal
- orthogonal
- not orthogonal
- (b)
(c)
Exercises 8.11, Page 450
- 7 and 2
- 4, 3, and 1
- approximately 0.2087
- (c)
(d) 0.59
(e) approximately 9.44EI/L2
Exercises 8.12, Page 458
- P = , D =
- not diagonalizable
- not diagonalizable
- Ellipse; using
we get X2/4 + Y2/6 = 1.
- Hyperbola; using
we get X2/4 − Y2/4 = 1.
Exercises 8.13, Page 465
- x1 = 1, x2 = 1, x3 = 5
- x1 = 28, x2 = −5, x3 = 13
- x1 = 25, x2 = −4, x3 = −19
- −2
- 1600
- −78
Exercises 8.14, Page 469
- (a)
- (a)
- (a)
- STUDY_HARD
- MATH_IS_IMPORTANT_
- DAD_I_NEED_MONEY_TODAY
- (a)
Exercises 8.15, Page 474
- (0 1 1 0)
- (0 0 0 1 1)
- (1 0 1 0 1 0 0 1)
- (1 0 0)
- parity error
- (1 0 0 1 1)
- (0 0 1 0 1 1 0)
- (0 1 0 0 1 0 1)
- (1 1 0 0 1 1 0)
- code word; (0 0 0 0)
- (0 0 0 1)
- code word; (1 1 1 1)
- (1 0 0 1)
- (1 0 1 0)
- (a) 27 = 128
(b) 24 = 16
(c) (0 0 0 0 0 0 0), (0 1 0 0 1 0 1),
(0 1 1 0 0 1 1), (0 1 0 1 0 1 0),
(0 1 1 1 1 0 0), (0 0 1 0 1 1 0),
(0 0 1 1 0 0 1), (0 0 0 1 1 1 1),
(1 0 0 0 0 1 1), (1 1 0 0 1 1 0),
(1 0 1 0 1 0 1), (1 0 0 1 1 0 0),
(1 1 1 0 0 0 0), (1 1 0 1 0 0 1),
(1 0 1 1 0 1 0), (1 1 1 1 1 1 1)
Exercises 8.16, Page 478
- y = 0.4x + 0.6
- y = 1.1x − 0.3
- y = 1.3571x + 1.9286
- v = −0.84T + 234, 116.4, 99.6
Exercises 8.17, Page 482
- (a) T = , X0 =
(b)
(c)
- (a) T = , X0 =
(b)
(c)
Chapter 8 in Review, Page 483
- false
- , −5
- 0
- false
- true
- false
- true
- false
- (a)
- x1 = −, x2 = 7, x3 =
- 240
- trivial solution only
- I2 + 10HNO3 → 2HIO3 + 10NO2 + 4H2O
- x1 = −, x2 = , x3 =
- x = X cos θ − Y sin θ,
y = X sin θ + Y cos θ
- x1 = 7, x2 = 5, x3 = 23
- λ1 = 5, λ2 = −1, K1 = , K2 =
- λ1 = λ2 = −1, λ3 = 8,
- λ1 = λ2 = −3, λ3 = 5,
- hyperbola
- HELP_IS_ON_THE_WAY
- (a) (1 1 0 0 1)
(b) parity error
Exercises 9.1, Page 492
- 2i − 32j
- (1/t)i − (1/t2)j; −(1/t2)i + (2/t3)j
- ‹e2t(2t + 1), 3t2 , 8t − 1›; ‹4e2t(t + 1), 6t, 8›
- x = 2 + t, y = 2 + 2t, z = + 4t
- r(t) × r″(t)
- r(t) · [r′(t) × r′″(t)]
- 2 r′1(2t) − (1/t2)r′2(1/t)
- i + 9j + 15k
- et(t − 1)i + e−2tj + et2k + c
- (6t + 1)i + (3t2 − 2)j + (t3 + 1)k
- (2t3 − 6t + 6)i + (7t − 4t3/2 − 3)j + (t2 − 2t)k
- 6(e3π − 1)
- a cos(s/a)i + a sin(s/a)j
- Differentiate r (t) · r (t) = c2 .
Exercises 9.2, Page 495
- Speed is.
- Speed is 2.
- Speed is.
- Speed is.
- (0, 0, 0) and (25, 115, 0);
v(0) = −2j − 5 k, a(0) = 2i + 2k,
v(5) = 10i + 73j + 5k, a(5) = 2i + 30j + 2k
- (a) r(t) = (−16t2 + 240t)j + 240 ti and
x(t) = 240 t, y(t) = −16t2 + 240t
(b) 900 ft
(c) 6235 ft
(d) 480 ft/s
- 72.11 ft/s
- 97.98 ft/s
- (a) 4300 ft, approximately 7052.15 ft, approximately 576.89 ft/s
(b)
- approximately 175.62 ft/s
- Assume that (x0, y0) are the coordinates of the center of the target at t = 0. Then rp = rt when t = x0/(v0 cos θ) = y0/(v0 sin θ). This implies tan θ = y0/x0. In other words, aim directly at the target at t = 0.
- 191.33 lb
- (b) Since F is directed along r, we must have F = cr for some constant c. Hence τ = r × (cr) = c(r × r) = 0. If τ = 0, then dL/dt = 0. This implies that L a constant.
Exercises 9.3, Page 502
- T = (/5)(−sin ti + cos tj + 2k)
- T = (a2 + c2)−1/2(−a sin ti + a cos tj + ck),
N = −cos ti − sin tj,
B = (a2 + c2)−1/2(c sin ti − c cos tj + ak),
ĸ = a/(a2 + c2)
- 3x − 3y + 4z = 3π
- 0, 5
- ĸ = 2, ρ = ; ĸ = 2/ ≈ 0.18,
ρ = /2 ≈ 5.59; the curve is sharper at (0, 0).
Exercises 9.4, Page 507
- elliptical cylinders
- ellipsoids
- ∂z/∂x = 2x − y2 , ∂z/∂y = −2xy + 20y4
- ∂z/∂x = 20x3 y3 − 2xy6 + 30x4 ,
∂z/∂y = 15x4 y2 − 6x2 y5 − 4
- ∂z/∂x = 2x−1/2/(3y2 + 1),
∂z/∂y = −24/(3y2 + 1)2
- ∂z/∂x = −3x2 (x3 − y2)−2,
∂z/∂y = 2y(x3 − y2)−2
- ∂z/∂x = −10 cos 5x sin 5x,
∂z/∂y = 10 sin 5y cos 5y
- fx = 7y/(x + 2y)2, fy = −7x/(x + 2y)2
- gu = 8u/(4u2 + 5v3), gv = 15v2/(4u2 + 5v3)
- wx = x−1/2y, wy = 2 − (y/z)ey/z − ey/z, wz = (y2/z2)ey/z
- Fu = 2uw2 − v3 − vwt2 sin(ut2),
Fv = −3uv2 + w cos(ut2), Fx = 128x7 t4 ,
Ft = −2uvwt sin(ut2) + 64x8 t3
- ∂z/∂x = 3x2 v2 euv 2 + 2uveuv 2, ∂z/∂y = −4yuveuv 2
- ∂z/∂u = 16u3 − 40y(2u − v),
∂z/∂v = −96v2 + 20y(2u − v)
- ∂w/∂t = −3u(u2 + v2)1/2e−t sin θ
−3v(u2 + v2)1/2e−t cos θ,
∂w/∂θ = 3u(u2 + v2)1/2e−t cos θ
−3v(u2 + v2)1/2e−t sin θ
- ∂R/∂u = s2 t4 ev 2 − 4rst4 uve−u2 + 8rs2 t3 uv2 eu2v2,
∂R/∂v = 2s2 t4 uvev 2 + 2rst4 e−u2 + 8rs2 t3 u2 veu2v2
- dz/dt = (4ut − 4vt−3)/(u2 + v2)
- dw/dt|t=π = −2
- 5.31 cm2/s
Exercises 9.5, Page 512
- (2x − 3x2y2)i + (−2x3y + 4y3)j
- (y2/z3)i + (2xy/z3)j − (3xy2/z4)k
- 4i − 32j
- x + y
- (− 2)
- −1
- −2i + 2j − 4k,
- ±31
- u = i − j; u = i + j; u = −i − j
- Du f = (9x2 + 3y2 − 18xy2 − 6x2 y)/;
Du F = (−6x2 − 54y2 + 54x + 6y − 72xy)/10
- (2, 5), (−2, 5)
- −16i − 4j
- x = 3e−4t, y = 4e−2t
- One possible function is f(x, y) = x3 − y3 + xy3 + exy.
Exercises 9.6, Page 517
- (−4, −1, 17)
- −2x + 2y + z = 9
- 6x − 2y − 9z = 5
- 6x − 8y + z = 50
- 2x + y −z = (4 + 5π)/4
- x + y − z = 2
- (1/, , 3/), (−1/, −, −3/)
- (−2, 0, 5), (−2, 0, −3)
- x = 1 + 2t, y = −1 − 4t, z = 1 + 2t
- (x − )/4 = (y − )/6 = −(z − 3)
Exercises 9.7, Page 521
- (x − y)i + (x − y)j; 2z
- 0; 4y + 8z
- (4y3 − 6xz2)i + (2z3 − 3x2)k; 6xy
- (3e−z − 8yz)i − xe−zj; e−z + 4z2 − 3ye−z
- (xy2 ey + 2xyey + x3 yzez + x3 yez)i − y2 eyj
+ (−3x2 yzez − xex)k; xyex + yex − x3 zez
- 2i + (1 − 8y)j + 8zk
- div F = 1 ≠ 0. If there existed a vector field G such that F = curl G, then necessarily div F = div (curl G) = 0.
Exercises 9.8, Page 530
- −125/3; −250(− 4)/12;
- 3; 6; 3
- −1; (π − 2)/2; π2/8; π2/8
- 21
- 30
- 1
- 1
- 460
- −
- −
- 0
- 70
- −
- e
- −4
- 0
- On each curve the line integral has the value .
Exercises 9.9, Page 540
- 14
- 3
- 330
- 1096
- ϕ = x4 y3 + 3x + y
- not a conservative field
- ϕ = x4 + xy + y4
- 3 + e−1
- 63
- 8 + 2e3
- 16
- π − 4
- ϕ = (Gm1m2)/|r|
Exercises 9.10, Page 547
- 24y − 20ey
- ln 5
- 2 − sin y
- 96
- 2 ln 2 − 1
- (c), 16π
- 18
- 2π
- 4
- 30 ln 6
- 15π/4
- (23/2 − 1)/18
- sin 8
- π/8
- 4k/9
- ab3π/4; a3bπ/4; b/2; a/2
- ka4/6
- 16k/3
- a3
Exercises 9.11, Page 552
- 27π/2
- (4π − 3)/6
- 25π/3
- (2π/3)(153/2 − 73/2)
- πa4 k/4
- (ka/12)(15 − 4π)
- πa4 k/2
- 4k
- 9π
- (π/4)(e − 1)
- 3π/8
- 250
- approximately 1450 m3
Exercises 9.12, Page 557
- 3
- 0
- 75π
- 48π
- (b − a) × (area of region bounded by C)
- 3a2 π/8
- 45π/2
- π
- 27π/2
- 3π/2
- 3π
Exercises 9.13, Page 564
- 10π/3
- (π/6)(173/2 − 1)
- 25π/6
- 2a2(π − 2)
- 8a2
- 2πa(c2 − c1)
- 0
- 972π
- (35/2 − 27/2 + 1)/15
- 9(173/2 − 1)
- 18
- 28π
- 8π
- 5π/2
- −8πa3
- 4πkq
- (1, , 2)
Exercises 9.14, Page 570
- −40π
- −3
- −3π/2
- π
- −152π
- 112
- Take the surface to be z = 0; 81π/4.
Exercises 9.15, Page 579
- 48
- 36
- π − 2
- e2 − e
- 50
- (a)
(b)
(c)
- 16π
- 2560k/3;
- k/30
- (−10/, 10/, 5)
- (/2, , −4)
- (, −π/4, −9)
- (2, 2π/3, 2)
- r2 + z2 = 25
- r2 − z2 = 1
- z = x2 + y2
- x = 5
- (2π/3)(64 − 123/2)
- 625π/2
- (0, 0, 3a/8)
- 8πk/3
- (/3, , 0); (, π/6, 0)
- (−4, 4, 4); (4, 3π/4, 4)
- (5, π/2, 5π/4)
- (, π/4, π/6)
- ρ = 8
- ϕ = π/6, ϕ = 5π/6
- x2 + y2 + z2 = 100
- z = 2
- 9π(2 − )
- 2π/9
- (0, 0, )
- πk
Exercises 9.16, Page 586
- 12a5 π/5
- 256π
- 62π/5
- 128
Exercises 9.17, Page 592
- (0, 0), (−2, 8), (16, 20), (14, 28)
- −2v
- −u−2
-
(0, 0) is the image of every point on the boundary u = 0.
- 16
- 126
- 15π/2
Chapter 9 in Review, Page 593
- true
- true
- false
- true
- false
- false
- true
- true
- true
- v (1) = 6i + j + 2k, v (4) = 6i + j + 8k, a (t) = 2k for all t
- i + 4j + (3π/4)k
- (6x2 − 2y2 − 8xy)/
- 2; −2/; 4
- 4πx + 3y − 12z = 4π − 6
- 41k/1512
- 8π
- 6xy
- 0
- 56 π3/3
- 12
- 2 + 2/3π
- π2/2
- (ln 3)(173/2 − 53/2)/12
- −4πc
- 0
- 125π
- 3π
- 0
- π
Exercises 10.1, Page 606
- X′ = X, where X =
- X′ = X +
- X′ = X, where X =
- = 4x + 2y + et
= −x + 3y − et
- = x − y + 2z + e−t − 3t
= 3x − 4y + z + 2e−t + t
= −2x + 5y + 6z + 2e−t − t
- Yes; W(X1, X2) = −2e−8t ≠ 0 implies that X1 and X2 are linearly independent on (−∞, ∞).
- No; W(X1, X2, X3) = 0 for every t. The solution vectors are linearly dependent on (−∞, ∞). Note that X3 = 2X1 + X2.
Exercises 10.2, Page 618
- X = c1e5t + c2e−t
- X = c1e−3t + c2et
- X = c1e8t + c2e−10t
- X = c1et + c2e2t + c3e−t
- X = c1e−t + c2e3t + c3e−2t
- X = c1e−t + c2e−t/2
+ c3e−3t/2
- X = 3et/2 + 2e−t/2
- (a)
(b)
(d) approximately 34.3 minutes
- X = c1 + c2
- X = c1e2t + c2
- X = c1et + c2e2t + c3e2t
- X = c1 + c2e5t
+ c3
- X = c1
- X = −7 e4t + 13 e4t
- Corresponding to the eigenvalue λ1 = 2 of multiplicity five, eigenvectors are
K1 = , K2 = , K3 =.
- X = c1e4t + c2e4t
- X = c1e4t + c2e4t
- X = c1 + c2
- X = c1 + c2 + c3
- X = c1et + c2et + c3et
- X = e2t + c2e−2t
+ c3e−2t
- X = −et −
- (a)
(b)
Exercises 10.3, Page 622
- X =
- X =
- X =
- X =
- X =
- (a)
Since M is a diagonal matrix with m1 and m2 nonzero, it has an inverse.
(b)
(c)
Exercises 10.4, Page 628
- (a)
(b)
(c) 10; 30; as t → ∞ the total amount of salt in the system of mixing tanks approaches a constant 40 lb
Exercises 10.5, Page 634
- eAt = ; e−At =
- eAt =
- X = c3 et + c4 e2t +
Chapter 10 in Review, Page 635
- (b)
Exercises 11.1, Page 644
- x′ = y
y′ = −9 sin x; critical points at (±nπ, 0)
- x′ = y
y′ = x2 + y(x3 − 1); critical point at (0, 0)
- x′ = y
y′ = ϵx3 − x;
critical points at (0, 0),
- (0, 0) and (−1, −1)
- (0, 0) and (, )
- (0, 0), (10, 0), (0, 16), and (4, 12)
- (0, y), y arbitrary
- (0, 0), (0, 1), (0, −1), (1, 0), (−1, 0)
- (a) x = c1e5t − c2e−t
y = 2c1e5t + c2e−t
(b) x = −2e−t
y = 2e−t
- (a) x = c1(4 cos 3t − 3 sin 3t) + c2(4 sin 3t + 3 cos 3t)
y = c1(5 cos 3t) + c2(5 sin 3t)
(b) x = 4 cos 3t − 3 sin 3t
y = 5 cos 3t
- (a) x = c1(sin t − cos t)e4t + c2(−sin t − cos t)e4t
y = 2c1(cos t)e4t + 2c2(sin t)e4t
(b) x = (sin t − cos t)e4t
y = 2(cos t)e4t
- r = , θ = t + c2; r = 4 , θ = t; the solution spirals toward the origin as t increases.
- r = , θ = t + c2; r = 1, θ = t (or x = cos t and y = sin t) is the solution that satisfies X(0) = (1, 0); r = , θ = t is the solution that satisfies X(0) = (2, 0). This solution spirals toward the circle r = 1 as t increases.
- There are no critical points and therefore no periodic solutions.
- There appears to be a periodic solution enclosing the critical point (0, 0).
Exercises 11.2, Page 651
- (a) If X(0) = X0 lies on the line y = 2x, then X(t) approaches (0, 0) along this line. For all other initial conditions, X(t) approaches (0, 0) from the direction determined by the line y = −x/2.
- (a) All solutions are unstable spirals that become unbounded as t increases.
- (a) All solutions approach (0, 0) from the direction specified by the line y = x.
- (a) If X(0) = X0 lies on the line y = 3x, then X(t) approaches (0, 0) along this line. For all other initial conditions, X(t) becomes unbounded and y = x serves as the asymptote.
- saddle point
- saddle point
- degenerate stable node
- stable spiral
- |μ| < 1
- μ < −1 for a saddle point; −1 < μ < 3 for an unstable spiral point
- (a) (−3, 4)
(b) unstable node or saddle point
(c) (0, 0) is a saddle point.
- (a) (, 2)
(b) unstable spiral point
(c) (0, 0) is an unstable spiral point.
Exercises 11.3, Page 659
- r =
- x = 0 is unstable; x = n + 1 is asymptotically stable.
- T = T0 is unstable.
- x = α is unstable; x = β is asymptotically stable.
- P = a/b is asymptotically stable; P = c is unstable.
- (, 1) is a stable spiral point.
- (, 0) and (, 0) are saddle points; (, −) is a stable spiral point.
- (1, 1) is a stable node; (1, −1) is a saddle point; (2, 2) is a saddle point; (2, −2) is an unstable spiral point.
- (0, −1) is a saddle point; (0, 0) is unclassified; (0, 1) is stable but we are unable to classify further.
- (0, 0) is an unstable node; (10, 0) is a saddle point; (0, 16) is a saddle point; (4, 12) is a stable node.
- θ = 0 is a saddle point. It is not possible to classify either θ = π/3 or θ = −π/3.
- It is not possible to classify x = 0.
- It is not possible to classify x = 0, but x = 1/ and x = −1/ are each saddle points.
- (a) (0, 0) is a stable spiral point.
- (a) (1, 0), (−1, 0)
- |v0| <
- If β > 0, (0, 0) is the only critical point and is stable. If β < 0, (0, 0), (, 0), and (−, 0), where 2 = −α/β, are critical points. (0, 0) is stable, while (, 0) and (−, 0) are each saddle points.
- (b) (5π/6, 0) is a saddle point.
(c) (π/6, 0) is a center.
Exercises 11.4, Page 666
- (a) First show that y2 = + g ln .
- (a) The new critical point is (d/c − ϵ2/c, a/b + ϵ1/b).
(b) yes
- (0, 0) is an unstable node, (0, 100) is a stable node, (50, 0) is a stable node, and (20, 40) is a saddle point.
- (a) (0, 0) is the only critical point.
Exercises 11.5, Page 674
- The system has no critical points.
- = −μ + 9y2 > 0 if μ < 0
- The single critical point (0, 0) is a saddle point.
- δ(x, y) = e−y/2
- = 4(1 − x2 − 3y2) > 0 for x2 + 3y2 < 1
- Use δ(x, y) = 1/(xy) and show that
- If n = (−2x, −2y), show that V · n = 2(x − y)2 + 2y4.
- Yes; the sole critical point (0, 0) lies outside the invariant region ≤ x2 + y2 ≤ 1, and so Theorem 11.5.5(ii) applies.
- V · n = 2y2(1 − x2) ≥ 2y2(1 − r2) and ∂P/∂x + ∂Q/∂y = x2 − 1 < 0. The sole critical point is (0, 0) and this critical point is a stable spiral point. Therefore, Theorem 11.5.6(ii) applies.
- (a)
(b) limt→∞ X(t) = (, ), a stable spiral point
Chapter 11 in Review, Page 676
- true
- a center or a saddle point
- false
- false
- true
- r = , θ = t; the solution curve spirals toward the origin.
- center; degenerate stable node
- stable node for μ < −2; stable spiral point for −2 < μ < 0; unstable spiral point for 0 < μ < 2; unstable node for μ > 2
- Show that .
- = 1
- (a) Hint: Use the Bendixson negative criterion.
(d) In (b), (0, 0) is a stable spiral point when β < 2ml × . In (c), (, 0) and (−, 0) are stable spiral points when β < .
Exercises 12.1, Page 685
- T = 1
- T = 2π
- T = 2π
Exercises 12.2, Page 690
- ;
converges to
-
converges to
-
converges to
Exercises 12.3, Page 696
- odd
- neither even nor odd
- even
- odd
- neither even nor odd
- (a)
- (b)
Exercises 12.4, Page 700
Exercises 12.5, Page 706
- (a) . . .
(b)
(c)
- (a) λn = 16n2, yn = sin (4n tan−1 x), n = 1, 2, 3, . . .
(b) sin (4m tan−1x) sin (4n tan−1x) dx = 0, m ≠ n
Exercises 12.6, Page 712
- α1 = 1.277, α2 = 2.339, α3 = 3.391, α4 = 4.441
- f(x) = P0(x) + P1(x) + P2(x) − P4(x) + …
- f(x) = P0(x) + P2(x) − P4(x) + …,
f(x) = |x| on (−1, 1)
Chapter 12 in Review, Page 713
- true
- cosine
- false
- 5.5, 1, 0
- true
- the interval (−1, 1),
Exercises 13.1, Page 720
- The possible cases can be summarized in one form u = c1, where c1 and c2 are constants.
- u = c1
- not separable
- u = (c1 cosh αx + c2 sinh αx)(c3 cosh αat + c4 sinh αat)
u = (c5 cos αx + c6 sin αx)(c7 cos αat + c8 sin αat)
u = (c9x + c10)(c11t + c12)
- u = (c1 cosh αx + c2 sinh αx)(c3 cos αy + c4 sin αy)
u = (c5 cos αx + c6 sin αx)(c7 cosh αy + c8 sinh αy)
u = (c9x + c10)(c11y + c12)
- For λ = α2 > 0 there are three possibilities:
(i) For 0 < α2 < 1,
.
(ii) For α2 > 1,
.
(iii) For α2 = 1,
.
The results for the case are similar.
For
.
- elliptic
- parabolic
- hyperbolic
- parabolic
- hyperbolic
Exercises 13.2, Page 725
-
u(x, 0) = f(x), 0 < x < L
-
u(x, 0) = f(x), 0 < x < L
-
u(0, t) = sin(πt/L), u(L, t) = 0, t > 0
u(x, 0) = f(x), 0 < x < L
-
u(0, t) = 0, u(L, t) = 0, t > 0
Exercises 13.3, Page 727
- u(x, t) = ,
where ,
Exercises 13.4, Page 732
- u(x, t) = sin at sin x
-
where An = (x) sin nx dx and qn =
- u(x, t) = t + sin x cos at
- u(x, t) = sin 2x sin 2at
-
where
Exercises 13.5, Page 738
-
where
-
where
- u = u1 + u2 where
- max temperature is u = 1
Exercises 13.6, Page 745
-
where
Exercises 13.7, Page 750
- u(x, t) = where
the αn are the consecutive positive roots of cot α = α/h
- u(x, y) = sinh αny sin αnx, where
An = sin αnx dx
and the αn are the consecutive positive roots of tan αa = −α/h
-
where An =
Exercises 13.8, Page 753
- u(x, y, t) = sin mx sin ny,
where Amn = [1 − (−1)m][1 − (−1)n]
- u(x, y, t) = sin mx sin ny cos a
where Amn = [(−1)m − 1][(−1)n − 1]
-
where and
- Use a = b = c = 1 with f(x, y) = u0 in Problem 5 and f(x, y) = −u0 in Problem 6. Add the two solutions.
Chapter 13 in Review, Page 754
- (a)
Exercises 14.1, Page 760
- u(r, θ) = rn sin nθ
- u(r, θ) = rn cos nθ
-
where
-
where
-
where
-
where
-
where
-
where
Exercises 14.2, Page 767
-
where
-
where
- (b)
where
Exercises 14.3, Page 771
- u(r, θ) = cos θ
-
where
-
where
-
where
Chapter 14 in Review, Page 772
-
where
Exercises 15.1, Page 778
- (a) Let τ = u2 in the integral erf ().
- y(t) = eπt erf(t)
- Use the property
Exercises 15.2, Page 783
- u(x, t) = f
- u(x, t) =
- (a)
- u(x, t) = u1 + (u0 − u1) erfc
- u(x, t) = 60 + 40 erfc (t − 2)
- u(x, t) = u0 + u0
- u(x, t) = u0 − u0
- u(x, t) = u0
Exercises 15.3, Page 791
-
where
- Let x = 2 in (7). Use a trigonometric identity and replace α by x. In part (b) make the change of variable 2x = kt.
Exercises 15.4, Page 797
- (a) u(x, t) =
Exercises 15.5, Page 801
Exercises 15.6, Page 810
- 1
- F8 =
Chapter 15 in Review, Page 811
- =
- = 1 + e−4t sin 2x
-
or
Exercises 16.1, Page 819
- u11 = , u21 =
- u11 = u21 = /16, u22 = u12 = 3/16
- u21 = u12 = 12.50, u31 = u13 = 18.75, u32 = u23 = 37.50,
u11 = 6.25, u22 = 25.00, u33 = 56.25
- (b) u14 = u41 = 0.5427, u24 = u42 = 0.6707,
u34 = u43 = 0.6402, u33 = 0.9451, u44 = 0.4451
Exercises 16.2, Page 824
The tables in this section give a selection of the total number of approximations.
-
Absolute errors are approximately 2.2 × 10–2, 3.7 × 10–2, 1.3 × 10–2.
-
Absolute errors are approximately 1.8 × 10–2, 3.7 × 10–2, 1.3 × 10–2.
- (a)
(b)
(c)
(d)
- (a)
(b)
(c)
(d)
- (a) ψ(x) = x + 20
(b)
Exercises 16.3, Page 827
- (a)
(b)
(c)
- (a)
(b)
Note: Time is expressed in milliseconds.
Chapter 16 in Review, Page 828
- u11 = 0.8929, u21 = 3.5714, u31 = 13.3929
- (a)
(b)
(c) Yes; the table in part (b) is the table in part (a) shifted downward.
Exercises 17.1, Page 834
- 1
- −1
- 3 + 3i
- −10 + i
- 7 − 13i
- −7 + 5i
- 11 − 10i
- −5 + 12i
- −2i
- − − i
- 8 − i
- − i
- 20i
- + i
- + i
- x/(x2 + y2)
- −2y − 4
- 11 − 6i
Exercises 17.2, Page 838
- 2(cos 0 + i sin 0) or 2(cos 2π + i sin 2π)
- − − i
- 5.5433 + 2.2961i
- ; 40.9808 + 10.9808i
- −512
- i
- −i
- w0 = 2, w1 = −1 + i, w2 = −1 −i
- cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ
Exercises 17.3, Page 841
- domain
- domain
- domain
- not a domain
- not a domain
- domain
- domain
- the line y = −x
- the hyperbola x2 − y2 = 1
Exercises 17.4, Page 845
- f(z) = (6x − 5) + i(6y + 9)
- f(z) = (x2 − y2 − 3x) + i(2xy − 3y + 4)
- f(z) = (x3 − 3xy2 − 4x) + i(3x2 y − y3 − 4y)
- −4 + i; 3 − 9i; 1 + 86i
- 14 − 20i; −13 + 43i; 3 − 26i
- 6 − 5i
- −4i
- 12z2 − (6 + 2i)z − 5
- 6z2 − 14z − 4 + 16i
- 6z(z2 − 4i)2
- 3i
- 2i, −2i
- x(t) = c1e2t and y(t) = c2e2t; the streamlines lie on lines through the origin.
- y = cx; the streamlines are lines through the origin.
Exercises 17.5, Page 850
- a = 1, b = 3
- f′ (z) = ex cos y + iex sin y
- f(z) = x + i(y + C)
- f(z) = x2 − y2 + i(2xy + C)
- f(z) = loge(x2 + y2) + i
- the x-axis and the circle |z| = 1
Exercises 17.6, Page 856
- −eπ
- −1.8650 + 4.0752i
- 0.2837 − 0.9589i
- −0.9659 + 0.2588i
- ey(cos x − i sin x)
- (cos 2xy + i sin 2xy)
- 1.6094 + i(π + 2nπ)
- 1.0397 + i(3π/4 + 2nπ)
- 1.0397 + i(π/3 + 2nπ)
- 2.1383 −(π/4)i
- 2.5649 + 2.7468i
- 3.4657 − (π/3)i
- 1.3863 + i(π/2 + 2nπ)
- 3 + i(−π/2 + 2nπ)
- e(2−8n)π
- e−2nπ(0.2740 + 0.5837i)
- e2
- no; no; no
Exercises 17.7, Page 859
- 10.0677
- 1.0911 + 0.8310i
- 0.7616i
- −0.6481
- −1
- 0.5876 + 1.3363i
- (−π/2 + 2nπ)i
- π/4 + nπ
- 2nπ ± 2i
Exercises 17.8, Page 862
- nπ
- 2nπ ± i loge(2 +)
- ±π/3 + 2nπ
- π/4 + nπ
- (−1)n loge 3 + nπi
Chapter 17 in Review, Page 862
- 0; 32
- −
- false
- 0.6931 + i(π/2 + 2nπ)
- −0.3097 + 0.8577i
- false
- 58 − 4i
- −8 + 8i
- an ellipse with foci (0, −2) and (0, 2)
- 1.0696 − 0.2127i, 0.2127 + 1.0696i, −1.0696 + 0.2127i, − 0.2127 − 1.0696i
- 5i
- the parabola v = u2 − 2u
- 1, −1
- pure imaginary numbers
- f′ (z) = (−2y − 5) + 2xi
Exercises 18.1, Page 869
- −28 + 84i
- −48 + i
- (2 + π)i
- πi
- − + i
- −e −1
- 0
- i
- 0
- circulation = 0, net flux =
- circulation = 0, net flux = 0
Exercises 18.2, Page 873
- 0
Exercises 18.3, Page 878
- −
- 0
- 2.3504i
- 0
- πi
- i
- 11.4928 + 0.9667i
- −0.9056 + 1.7699i
Exercises 18.4, Page 884
- 8πi
- −2πi
- −π(20 + 8i)
- −2π; 2π
- −8π
- −2πe−1 i
- πi
- −5πi; −5πi; 9πi; 0
- −π(3 + i); π(3 + i)
- π( + 12i)
- 0
- −πi
Chapter 18 in Review, Page 885
- true
- true
- 0
- π(6π − i)
- true
- 0 if n ≠ −1, 2πi if n = −1
- −
- + i
- 0
- −14.2144 + 22.9637i
- 2πi
- −πi
- πi
- 2π
- 2nπi
Exercises 19.1, Page 893
- 5i, −5, −5i, 5, 5i
- 0, 2, 0, 2, 0
- converges
- converges
- diverges
- limn→∞ Re(zn) = 2 and limn→∞ Im(zn) =
- The series converges to 1/(1 + 2i).
- divergent
- convergent, − + i
- convergent, − i
- |z − 2i| =, R =
- |z − 1 − i| = 2, R = 2
- |z − i| = 1/, R = 1/
- |z − 4 − 3i| = 25, R = 25
- The series converges at z = −2 + i.
Exercises 19.2, Page 897
- z + z3 + z5 + . . .
- (a) The distance from z0 to the branch cut is 1 unit.
(c) The series converges within the circle
|z + 1 − i| =. Although the series converges in the shaded region, it does not converge to (or represent) Ln z in this region.
- 1.1 + 0.12i
Exercises 19.3, Page 905
- − 3 + 6(z − 2) − 10(z − 2)2 + . . .
- − 4 − 4z − 4z2 − . . .
Exercises 19.4, Page 908
- Define f(0) = 2.
- −2 + i is a zero of order 2.
- −i and i are zeros of order 1; 0 is a zero of order 2.
- 2nπi, n = 0, ±1, . . . , are zeros of order 1.
- order 5
- order 1
- −1 ± 2i are simple poles.
- −2 is a simple pole; −i is a pole of order 4.
- (2n + 1)π/2, n = 0, ±1, . . . , are simple poles.
- 0 is a pole of order 2.
- 2nπi, n = 0, ±1, . . . , are simple poles.
- 0 is a removable singularity; 1 is a simple pole.
- nonisolated
Exercises 19.5, Page 913
- −3
- 0
- Res (f(z), −4i) = , Res (f(z), 4i) =
- Res (f(z), 1) = , Res (f(z), −2) = −,
Res (f(z), 0) = −
- Res (f(z), −1) = 6, Res (f(z), −2) = −31,
Res (f(z), −3) = 30
- Res (f(z), 0) = −3/π4 , Res (f(z), π) = (π2 − 6)/2π4
- Res (f(z), (2n + 1)π/2) = (−1)n+1, n = 0, ±1, ±2, . . .
- 0; 2πi/9; 0
- πi; πi; 0
- 0
- 2πi cosh 1
- −4i
- 6i
- − + i
Exercises 19.6, Page 919
- 4π/
- 0
- π/
- π/4
- π/6
- π
- π/16
- 3π/8
- π/2
- π/
- πe−1
- πe−1
- πe−3
Chapter 19 in Review, Page 919
- true
- false
- true
- true
- −πi
- 7π/50
Exercises 20.1, Page 926
- the line v = −u
- the line v = 2
- open line segment from 0 to πi
- the ray θ =
- the line u = 1
- the fourth quadrant
- the wedge π/4 ≤ Arg w ≤ π/2
- the circle with center w = 4i and radius r = 1
- the strip −1 ≤ u ≤ 0
- the wedge 0 ≤ Arg w ≤ 3π/4
- w = −i(z − i) = −iz − 1
- w = 2(z − 1)
- w = −z4
- w = e3z/2
- w = −z + i
Exercises 20.2, Page 931
- conformal at all points except z = ±1
- conformal at all points except z = πi ± 2nπi
- conformal at all points outside the interval [−1, 1] on the x-axis
- The image is the region shown in Figure 20.2.2(b). A horizontal segment z(t) = t + ib, 0 < t < π, is mapped onto the lower or upper portion of the ellipse
according to whether b > 0 or b < 0.
- The image of the region is the wedge 0 ≤ Arg w ≤ π/4. The image of the line segment [−π/2, π/2] is the union of the line segments joining eiπ/4 to 0 and 0 to 1.
- w = cos(πz/2) using H-4
- w = using H-5 and w = z1/4
- w = using H-6 and w = z1/2
- w = sin(−iLn z − π/2); A′B′ is the real interval (−∞, −1].
- u = Arg (z4) or u(r, θ) = θ
Exercises 20.3, Page 938
- T(0) = ∞, T(1) = i, t(∞) = 0; |w| = 1 and the line v = ; |w| ≥ 1
- T(0) = −1, T(1) = ∞, T(∞) = 1; the line u = 0 and the circle |w − 1| = 2; the half-plane u ≤ 0
- . The level curves are the images of the circles |w| = r, 1 < r < 2, under the linear fractional transformation T(w) = (w + 2)/(w − 1). Since the circles do not pass through the pole at w = 1, the images are circles.
- Construct the linear fractional transformation that sends 1, i, −i to 0, 1, −1.
- Simplify T2(T1(z)) = .
Exercises 20.4, Page 942
- first quadrant
- f′ (z) = A(z + 1)−1/2z−1/2(z − 1)−1/2 for some constant A
- f′ (z) = A(z + 1)−1/3z−1/3 for some constant A
- Show that f′ (z) = and conclude that f(z) = cosh−1z.
- Show that f′ (z) → A/z as w1 → ∞ and conclude that f(z) = Ln z.
- Show that f′ (z) → A(z + 1)−1/2z(z − 1)−1/2 = Az/(z2 − 1)1/2 as u1 → 0.
Exercises 20.5, Page 946
- u(0, 0) = , u(−0.5, 0) = 0.5693, u(0.5, 0) = 0.1516
- Show that u(0, 0) = .
- u(r, θ) = r sin θ + r cos θ or u(x, y) = x + y
Exercises 20.6, Page 951
- g(z) = is analytic everywhere and G(z) = z is a complex potential. The equipotential lines are the lines x cos θ0 + y sin θ0 = c.
- g(z) = 1/z is analytic for z ≠ 0 and G(z) = Ln z is analytic except for z = x ≤ 0. The equipotential lines are the circles x2 + y2 = e2c.
- ϕ = Arg z or ϕ(r, θ) = θ, and G(z) = Ln z is a complex potential. The equipotential lines are the rays θ = c and F = .
- The equipotential lines are the images of the rays θ = θ0 under the successive transformations ζ = w1/2 and z = (ζ + 1)/(−ζ + 1). The transformation ζ = w1/2 maps the ray θ = θ0 to the ray θ = θ0/2 in the ζ-plane, and z = (ζ + 1)/(−ζ + 1) maps this ray onto an arc of a circle that passes through z = −1 and z = 1.
- (a) ψ(x, y) = 4xy(x2 − y2) or, in polar coordinates, ψ(r, θ) = r4 sin 4θ. Note that ψ = 0 on the boundary of R.
(b) V = = 4(x3 − 3xy2, y3 − 3x2y)
(c)
- (a) ψ(x, y) = cos x sinh y and ψ = 0 on the boundary of R.
(b) V = = (cos x cosh y, sin x sinh y)
(c)
- (a) ψ(x, y) = 2xy − or, in polar coordinates, ψ(r, θ) = (r2 − 1/r2) sin 2θ. Note that ψ = 0 on the boundary of R.
(b) V =
(c)
- (a) f(t) = πi − [loge|t + 1| + loge|t − 1|
+ i Arg (t + 1) + i Arg (t − 1)] and so
Hence, Im (G(z)) = ψ(x, y) = 0 on the boundary of R.
(b)
(c)
- (a) f(t) = ((t2 − 1)1/2 + cosh−1 t) = ((t2 − 1)1/2 + Ln (t + (t2 − 1)1/2)) and so Im (f(t)) =
and Re (f(t)) = 0 for −1 < t < 1.
Hence, Im (G(z)) = ψ(x, y) = 0 on the boundary of R.
(b)
(c)
- z = 0 in Example 5; z = 1, z = −1 in Example 6
- The streamlines are the branches of the family of hyperbolas x2 + Bxy − y2 − 1 = 0 that lie in the first quadrant. Each member of the family passes through (1, 0).
- Hint: For z in the upper half-plane,
k [Arg (z − 1) − Arg (z + 1)] = k Arg .
Chapter 20 in Review, Page 953
- v = 4
- the wedge 0 ≤ Arg w ≤ 2π/3
- true
- 0, 1, ∞
- false
- The image of the first quadrant is the strip 0 < v < π/2. Rays θ = θ0 are mapped onto horizontal lines v = θ0 in the w-plane.
- w =
- u = 2 − 2y/(x2 + y2)
- (a) Note that α1 → 0, α2 → 2π, and α3 → 0 as u1 → ∞.
(b) Hint: Write f(t) = A[loge|t + 1| + loge|t − 1| + i Arg (t + 1) + i Arg (t − 1)] + B.
- G(z) = f−1 (z) maps R to the strip 0 ≤ v ≤ π, and U(u, v) = v/π is the solution to the transferred boundary problem. Hence, ϕ(x, y) = (1/π)Im (G(z)) = (1/π)ψ(x, y), and so the equipotential lines ϕ(x, y) = c are the streamlines ψ(x, y) = cπ.
Exercises Appendix A, Page APP-8
- 120
- π
- (a)
(b)
(c)